Technique for Adequate CFD-Modeling of the Pump With Hydro-Drive of the Low-Pressure Stage

Author:

Zubanov Vasilii M.1,Shabliy Leonid S.1,Krivcov Alexander V.1,Matveev Valeriy N.1

Affiliation:

1. Samara State Aerospace University, Samara, Russia

Abstract

This article describes the technique for CFD-modeling of a powerful two-stage pump with the following main parameters: main rotor speed is 13,300 rpm, inlet pressure is 0.2 MPa, pressure head is more than 3,000 meters with mass flow of 250 kg/s. The main feature of investigated pump is the hydro-drive of the low-pressure stage of turbine with variable rotational speed. There are two highlights in this work in comparison with the previous ones. The first one is how to choose the rotating speed of hydro-turbine. The second one is the CFD-modeling of cavitation processes. The core part of proposed technique is the determination of rotational speed during CFD-simulation by special methodology. Another feature is the cavitation modeling to be sure that there is no cavitation in pre-pump at quite low inlet pressure and variable rotor speed. Also, recommendations about program tools (ANSYS CFX, NUMECA AutoGrid5, ANSYS ICEM CFD) are a significant part of the discussed technique, as well as modeling features (fluid domain restriction, meshing, turbulence models choosing, convergence checking, post-processing). The adequacy of CFD-model was evaluated by comparing predicted characteristics of the pump with the experimental ones derived from the test rig. The differences amounted to less than 10%. The obtained technique can be used in the future research for performance improving and efficiency increasing of pumps with hydro-drive of the low-pressure stage by CFD-tools.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the performance of a two-stage centrifugal pump by optimizing its flowpath;AIP Conference Proceedings;2021

2. Optimization of Two-Stage Centrifugal Pump of Rocket Engine;EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization;2018-09-14

3. Optimization of Powerful Two-stage Screw Centrifugal Pump;MATEC Web of Conferences;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3