An Innovative Approach to Model Temperature Influence on Particle Deposition in Gas Turbines

Author:

Agati Giuliano1,Borello Domenico1,Rispoli Franco1,Venturini Paolo1

Affiliation:

1. Sapienza Università di Roma, Rome, Italy

Abstract

The mechanism of deposit formation on the blade surfaces of a cooled turbine vane is investigated numerically. The prediction of dispersed particles trajectories is affected by temperature, by the mechanics of impact on a solid surface, and by the interaction between particles and film cooling jets and all these aspects must be accounted for. The model here proposed is obtained as a high temperature extension of the well-known Thornton and Ning (1998) approach in a temperature interval ranging between 500 K (where basic model — based on an elastic-plastic impact mechanism assumption — holds) and 1500 K (where the critical viscosity model of Walsh et al., 1990 is usually employed). The transition between the two extreme conditions is modelled through a temperature-driven modification of the mechanical properties of both particles and target surfaces. Our computations demonstrate that the updated model is able to return credible predictions of deposit formation when compared with the baseline models of Thornton and Ning and of Walsh and co-authors. Moreover in the region where particles bounce off, the model predict the coefficient of restitution according to the actual mechanical properties of particles, thus providing a better particle dynamics description than in both the critical viscosity and original Thornton and Ning models.

Publisher

American Society of Mechanical Engineers

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3