Theoretical Study of Top Foil Sagging Effect on the Performance of Air Thrust Foil Bearing

Author:

Xu Fangcheng1,Kim Daejong1,Zamanian Yazdi Behzad1

Affiliation:

1. University of Texas at Arlington, Arlington, TX

Abstract

Air thrust foil bearings are used in small turbomachinery to support axial load. Typically, thrust bearings are designed with certain amount of taper from the leading edge until flat land area with uniform clearance. Therefore, the bearing performance is affected by many factors such as taper ratio, taper height, configuration of structural support, top foil thickness, etc. The most popular form of structural support is a corrugated array of bumps in either circumferential or radial direction, and many thrust foil bearings are manufactured with the bump foils in the land area only. Because the taper region does not have the bump foils and hydrodynamic pressure begins to build from the taper region, certain amount of top foil sagging in the taper area is inevitable. This paper studies the effect of the top foil sagging in the taper region on the static performance of the thrust foil bearings. The top foil is modeled as a 2D plate, and finite element method is used to predict the sagging effect of the top foil and coupled with finite difference method to solve Reynolds equation. Hydrodynamic pressure, top foil deflection, minimum film thickness, and power loss with different top foil thicknesses are calculated. Simulations show that under the identical external load, thin top foil allows very large sagging in the taper area resulting in abrupt change of film thickness around the beginning of land area accompanied by larger peak pressure and power loss and smaller minimum film thickness compared to the case of thicker top foils. Further studies with various top foil thicknesses and full bump supports in the taper region give insight to the design principle of thrust foil bearings with various sizes.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3