Affiliation:
1. Leibniz Universitaet Hannover, Hannover, Germany
2. MTU Aero Engines AG, Munich, Germany
Abstract
Reducing the fuel consumption is a main objective in the development of modern aircraft engines. Focusing on aircraft for mid-range flight distances, a significant potential to increase the engines overall efficiency at off-design conditions exists in reducing secondary flow losses of the compressor. For this purpose, Active Flow Control (AFC) by aspiration or injection of fluid at near wall regions is a promising approach.
To experimentally investigate the aerodynamic benefits of AFC by aspiration, a 4½-stage high-speed axial-compressor at the Leibniz Universitaet Hannover was equipped with one AFC stator row. The numerical design of the AFC-stator showed significant hub corner separations in the first and second stator for the reference configuration at the 80% part-load speed-line near stall. Through the application of aspiration at the first stator, the numerical simulations predict the complete suppression of the corner separation not only in the first, but also in the second stator. This leads to a relative increase in overall isentropic efficiency of 1.47% and in overall total pressure ratio of 4.16% compared to the reference configuration.
To put aspiration into practice, the high-speed axial-compressor was then equipped with a secondary air system and the AFC stator row in the first stage. All experiments with AFC were performed for a relative aspiration mass flow of less than 0.5% of the main flow. Besides the part-load speed-lines of 55% and 80%, the flow field downstream of each blade row was measured at the AFC design point. Experimental results are in good agreement with the numerical predictions. The use of AFC leads to an increase in operating range at the 55% part-load speed-line of at least 19%, whereas at the 80% part-load speed-line no extension of operating range occurs.
Both speed-lines, however, do show a gain in total pressure ratio and isentropic efficiency for the AFC configuration compared to the reference configuration. Compared to the AFC design point, the isentropic efficiency ηis rises by 1.45%, whereas the total pressure ratio Πtot increases by 1.47%. The analysis of local flow field data shows that the hub corner separation in the first stator is reduced by aspiration, whereas in the second stator the hub corner separation slightly increases. The application of AFC in the first stage further changes the stage loading in all downstream stages. While the first and third stage become unloaded by application of AFC, the loading in terms of the De-Haller number increases in the second and especially in the fourth stage. Furthermore, in the reference as well as in the AFC configuration, the fourth stator performs significantly better than predicted by numerical results.
Publisher
American Society of Mechanical Engineers
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献