Ply-Blocking Phenomenon and Hole Size Effects in Modeling Progressive Damage in Fiber-Reinforced Plastics Laminates

Author:

Divse Vishwas1,Joshi Suhas S.2,Marla Deepak3

Affiliation:

1. Indian Institute of Technology Bombay Department of Mechanical Engineering, , Powai, Mumbai 400076 , India

2. Indian Institute of Technology Bombay, Indian Institute of Technology Indore Department of Mechanical Engineering, , Indore 400076 , India

3. Indian Institute of Technology Bombay Department of Mechanical Engineering, , Mumbai 400076 , India

Abstract

Abstract This work presents a 3D progressive damage model based on Puck’s failure theory and linear damage evolution in fiber-reinforced plastic (FRP) laminates. It includes shear nonlinearity, in situ strengths, equivalent stress–strain, and mixed-mode fracture energy, and is implemented in abaqus/explicitTM through VUMAT subroutine. Various test cases were performed to validate the model and demonstrate its applications. The shear nonlinearity test shows that transverse compression retards matrix microcracking while transverse tension accelerates it. The open hole tension (OHT) test of laminates shows that delamination initiates around the holes and free edges, spreads the most, and propagates in different directions at different interfaces. Later, interfiber damage in 45 deg or −45 deg plies initiates and spreads at a slight inclination to the tip of the hole. Finally, fiber damage in 0 deg plies initiates at the tip of the hole, spreads the least, and propagates perpendicular to the loading direction. The ply-blocked laminates show around 30% higher strength and fracture strain than non-ply-blocked laminate due to delay in damage propagation, and are less sensitive to the hole size. Accordingly, their OHT strength reduces by 14.3% as opposed to 21.14% in the non-ply-blocked laminates, when the hole size increases from 6 to 9 mm. The damage location, magnitude, and propagation were corroborated with experimental findings in the literature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3