Governing Equation Identification of Nonlinear Single Degree-of-Freedom Oscillators With Coulomb Friction Using Explicit Stick and Slip Temporal Constraints

Author:

Mahajan Saurabh1,Cicirello Alice1

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, South Holland, Delft 2628 CN, Netherlands

Abstract

Abstract The friction force at joints of engineering structures is usually unknown and not directly identifiable. This contribution explores a procedure for obtaining the governing equation of motion and correctly identifying the unknown Coulomb friction force of a mass-spring-dashpot system. In particular, a single degree-of-freedom system is investigated both numerically and experimentally. The proposed procedure extends the state-of-the-art data-driven sparse identification of nonlinear dynamics (SINDy) algorithm by developing a methodology that explicitly imposes constraints encoding knowledge of the nonsmooth dynamics experienced during stick-slip phenomena. The proposed algorithm consists of three steps: (i) data segregation of mass-motion from mass-sticking during stick-slip response; (ii) application of SINDy on the mass-motion dataset to obtain the functional form of the governing equation; and (iii) applying sticking and slipping conditions to identify the unknown system parameters. It is shown that the proposed approach yields an improved estimate of the uncertain system parameters such as stiffness, viscous damping, and magnitude of friction force (all mass normalized) for various signal-to-noise ratios compared to SINDy.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Reference23 articles.

1. The Power Spectral Density of Response for a Strongly Non-Linear Random Oscillator;J. Sound Vib.,1994

2. Equivalent Linearization Techniques;J. Acoust. Soc. Am.,1963

3. Random Excitation of a System With Bilinear Hysteresis;ASME J. Appl. Mech.,1960

4. Response of Van Der Pol's Oscillator to Random Excitation;ASME J. Appl. Mech.,1959

5. Stochastic Linearization Method With Random Parameters and Power Spectral Density Calculation,1993

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3