Affiliation:
1. Mechanical and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, Illinois 60616
Abstract
Silica gel-water vapor is commonly suggested as a working media for solar-powered desiccant cooling systems since the system can be regenerated at relatively low temperatures. In the present study the sorption rates of water vapor by regular density silica gel particles were measured in the pressure range of 1–25 torr using a constant volume/variable pressure apparatus. The sorption rate was determined from recorded time variation of water vapor pressure in a test unit of known volume during the sorption process. The mass transfer film resistance was eliminated by evacuating the system and by introducing pure water vapor into the test unit. The apparent solid-side diffusivity was obtained by matching the analytical solution of the simultaneous heat and mass transfer governing equations to the experimental data. The uptake measurements had been performed for three particle sizes of silica gel (150 μm, 1 mm, and 3 mm). The tests were performed sequentially in small steps over a range of initial silica gel moisture content ranging from near zero up to 0.25 kg H2O per kg dry silica gel. The effect of moisture content and particle size on the sorption rate and apparent diffusivity were determined. The effect of charging on time variation of pressure was evaluated and used for correction on all sorption data.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献