Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method

Author:

Mamghaderi Azadeh1,Bastami Alireza1,Pourafshary Peyman2

Affiliation:

1. e-mail:

2. e-mail:  Institute of Petroleum Engineering, University of Tehran, Tehran, Iran

Abstract

Managing oil production from reservoirs to maximize the future economic return of the asset is an important issue in petroleum engineering. In many applications in reservoir modeling and management, there is a need for rapid estimation of large-scale reservoirs. The capacitance-resistive model (CRM), regarded as a promising rapid evaluator of reservoir performance, has recently been used for simulation of single-layer reservoirs. Injection and production rates are considered as input and output signals in this model. Connections between the wells and the effects of injection rates on production rates are calculated based on these signals to develop a simple model for the reservoir. In this study, CRM is improved to model a multilayer reservoir and is applied to estimate and optimize waterflooding performance in an Iranian layered reservoir. In this regard, CRM is coupled with production logging tools (PLT) data to study the effects of layers. A fractional-flow model is also coupled with the developed CRM to estimate oil production. Genetic algorithm (GA) method is used to minimize the error objective function for the total production history and oil production history to evaluate model parameters. GA is then used to maximize oil production by reallocating the injected water volumes, which is the main purpose of this research. The results show that our fast method is able to model liquid and oil production history and is in good agreement with available field data. Taking into account the reservoir constraints, the optimal injection schemes have been obtained. For the proposed injection profile, the field hydrocarbon production will increase by up to 1.8% until 2016. Also, the wells will reach the water-cut constraint 2 yr later than the current situation, which increases the production period of the field.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3