Complex Flow Generation and Development in a Full-Scale Turbofan Inlet

Author:

Guimarães Tamara1,Todd Lowe K.2,O'Brien Walter F.1

Affiliation:

1. Turbomachinery and Propulsion Research Laboratory, Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061 e-mail:

2. Kevin T. Crofton Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061 e-mail:

Abstract

The future of aviation relies on the integration of airframe and propulsion systems to improve aerodynamic performance and efficiency of aircraft, bringing design challenges, such as the ingestion of nonuniform flows by turbofan engines. In this work, we describe the behavior of a complex distorted inflow in a full-scale engine rig. The distortion, as in engines on a hybrid wing body (HWB) type of aircraft, is generated by a 21-in diameter StreamVane, an array of vanes that produce prescribed secondary flow distributions. Data are acquired using stereoscopic particle image velocimetry (PIV) at three measurement planes along the inlet of the research engine (Reynolds number of 2.4 × 106). A vortex dynamics-based model, named StreamFlow, is used to predict the mean secondary flow development based on the experimental data. The mean velocity profiles show that, as flow develops axially, the vortex present in the profile migrates clockwise, opposite to the rotation of the fan, and toward the spinner of the engine. The turbulent stresses indicate that the center of the vortex meanders around a preferred location, which tightens as flow gets closer to the fan, yielding a smaller radius mean vortex near the fan. Signature features of the distortion device are observed in the velocity gradients, showing the wakes generated by the distortion screen vanes in the flow. The results obtained shed light onto the aerodynamics of swirling flows representative of distorted turbofan inlets, while further advancing the understanding of the complex vane technology presented herein for advanced ground testing.

Funder

Langley Research Center

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3