Validating Fatigue Safety Factor Calculation Methods for Cardiovascular Stents

Author:

Marrey Ramesh1,Baillargeon Brian2,Dreher Maureen L.3,Weaver Jason D.3,Nagaraja Srinidhi3,Rebelo Nuno2,Gong Xiao-Yan4

Affiliation:

1. Cordis Corporation, a Cardinal Health company, 1820 McCarthy Boulevard, Milpitas, CA 95035 e-mail:

2. Dassault Systemes, Santa Clara, CA 95054

3. U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD 20993

4. Medical Implant Mechanics, Aliso Viejo, CA 92656

Abstract

Evaluating risk of fatigue fractures in cardiovascular implants via nonclinical testing is essential to provide an indication of their durability. This is generally accomplished by experimental accelerated durability testing and often complemented with computational simulations to calculate fatigue safety factors (FSFs). While many methods exist to calculate FSFs, none have been validated against experimental data. The current study presents three methods for calculating FSFs and compares them to experimental fracture outcomes under axial fatigue loading, using cobalt-chromium test specimens designed to represent cardiovascular stents. FSFs were generated by calculating mean and alternating stresses using a simple scalar method, a tensor method which determines principal values based on averages and differences of the stress tensors, and a modified tensor method which accounts for stress rotations. The results indicate that the tensor method and the modified tensor method consistently predicted fracture or survival to 107 cycles for specimens subjected to experimental axial fatigue. In contrast, for one axial deformation condition, the scalar method incorrectly predicted survival even though fractures were observed in experiments. These results demonstrate limitations of the scalar method and potential inaccuracies. A separate computational analysis of torsional fatigue was also completed to illustrate differences between the tensor method and the modified tensor method. Because of its ability to account for changes in principal directions across the fatigue cycle, the modified tensor method offers a general computational method that can be applied for improved predictions for fatigue safety regardless of loading conditions.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3