The Effect of Water Droplet Size, Temperature, and Impingement Velocity on Gold Wettability at the Nanoscale

Author:

Cordeiro Jhonatam1,Desai Salil2

Affiliation:

1. Department of Industrial and Systems Engineering, North Carolina A&T State University, 419 McNair Hall, 1601, East Market Street, Greensboro, NC 27411 e-mail:

2. Department of Industrial and Systems Engineering, North Carolina A&T State University, 423 McNair Hall, 1601, East Market Street, Greensboro, NC 27411 e-mail:

Abstract

Molecular dynamics (MD) simulations are performed to investigate the wettability of gold substrate interacting with nanosized droplets of water. The effects of droplet size, temperature variation, and impingement velocity are evaluated using molecular trajectories, dynamic contact angle, spread ratios, radial distribution function (RDF), and molecular diffusion graphs. Droplets of 4 nm and 10 nm were simulated at 293 K and 373 K, respectively. Stationary droplets were compared to droplets impinging the substrate at 100 m/s. The simulations were executed on high-end workstations equipped with NVIDIA® Tesla graphical processing units (GPUs). Results show that smaller droplets have a faster stabilization time and lower contact angles than larger droplets. With an increase in temperature, stabilization time gets faster, and the molecular diffusion from the water droplet increases. Higher temperatures also increase the wettability of the gold substrate, wherein droplets present a lower contact angle and a higher spread ratio. Droplets that impact the substrate at a higher impingement velocity converge to the same contact angle as stationary droplets. At higher temperatures, the impingement velocities accelerate the diffusion of water molecules into vapor. It was revealed that impingement velocities do not influence stabilization times. This research establishes relationships among different process parameters to control the wettability of water on gold substrates which can be explored to study several nanomanufacturing processes.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Process Chemistry and Technology,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3