An Improved Analytical Model for Time-Dependent Shearing Deformation in Area-Array Interconnects

Author:

Shakya S.1,Heinrich S. M.2,Lee P. S.3

Affiliation:

1. Pujara Wirth Torke, Inc., Wauwatosa, WI 53226

2. Department of Civil and Environmental Engineering, Marquette University, Milwaukee, WI 53201-1881

3. Rockwell Automation, Milwaukee, WI 53204

Abstract

An improved time-dependent analytical model is developed for predicting the maximum shearing displacement in an area-array electronic assembly under global thermal mismatch loading. The thermal loads are assumed to be uniform within the component and substrate, with both step-function and sinusoidal temperature histories being considered. The time-dependent effects in the array’s shear deformation are introduced in an approximate manner by modeling the interconnect material (solder) as a temperature-independent linear viscoelastic material. The viscoelastic constitutive law used for the solder is that of a three-parameter viscoelastic standard solid in distortion and an elastic solid in the hydrostatic mode. In the authors’ previous work the steady-state shear force in the joints was assumed to vary sinusoidally with a frequency-independent amplitude. This assumption has been relaxed in the present study, leading to improved accuracy. All results have been derived as closed-form correction factors to be applied to the easily calculated unconstrained shear displacement to obtain the maximum shear displacement. All the correction factors depend on prescribed geometric and material parameters of the component, substrate, and joints. The results have been presented in the form of dimensionless plots to aid in the analysis or design process, thereby providing convenient alternatives or supplements to time-consuming and expensive finite element analyses of entire assemblies.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3