The Effects of Axisymmetric Convergent Contouring and Blowing Ratio on Endwall Film Cooling and Vane Pressure Side Surface Phantom Cooling Performance

Author:

Bai Bo1,Li Zhigang1,Li Jun1,Mao Shuo2,Ng Wing F.2

Affiliation:

1. Institute of Turbomachinery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

2. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060

Abstract

Abstract To reduce the intensity of endwall secondary flow, the axisymmetric convergent contoured endwall is commonly designed in the first nozzle guide vane (NGV) passage of the real gas turbine engines. This endwall contouring can obviously alter flow field near endwall and affect the coolant flow through the upstream double-row discrete film holes. This leads to a significant influence on the endwall film cooling performance, vane surface phantom cooling, and vane passage aerodynamic performance. In this paper, a detailed numerical investigation on the endwall film cooling and vane pressure side surface phantom cooling was performed, at the simulated realistic gas turbine operating conditions (high inlet freestream turbulence level of 16%, exit Mach number of 0.85, and exit Reynolds number of 1.7 × 106). Based on a double coolant temperature model, a novel numerical method for the predictions of adiabatic wall film cooling effectiveness was proposed. This numerical method was validated by comparing the predicted results with experimental data of endwall Nusselt number, endwall film cooling effectiveness, and flow visualization near endwall. The results indicate that the present numerical method can accurately predict endwall thermal load distributions, endwall film cooling distributions, and vane surface phantom cooling distributions. The endwall heat transfer coefficient, endwall film cooling effectiveness, phantom cooling effectiveness of the vane pressure side surface, and total pressure loss coefficients (TPLC) were predicted and compared for two endwall contouring shapes (flat endwall and axisymmetric convergent contoured endwall) at three different blowing ratios (low blowing ratio of BR = 1.0, design blowing ratio of BR = 2.5, and high blowing ratio of BR = 3.5) with a constant density ratio of DR = 1.2, based on the present novel numerical method. Results show that the axisymmetric convergent endwall contouring leads to a slight enhancement (maximum enhancement level less than 20%) of endwall heat transfer in the entire vane passage (0 < x < 0.65Cx). The axisymmetric convergent endwall contouring has a significantly desired effect on endwall film cooling performance (maximum enhancement level of 67%), phantom cooling performance of the vane pressure side surface (maximum increase level approximately 100%), and aerodynamic loss (maximum reduction level of 1.45%) for all blowing ratio cases, but the benefit enhancement level is obviously affected by the blowing ratio values. This suggests that the optimum of endwall contouring shapes is an effective technical way to improve endwall film cooling performance and decrease the depletion of coolant; the coupled effects of the appropriate axisymmetric convergent endwall contouring and the optimum blowing ratio should be considered in the design process of advance endwall cooling schemes.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference35 articles.

1. Fundamental Gas Turbine Heat Transfer;ASME J. Therm. Sci. Eng. Appl.,2016

2. Gas Turbine Film Cooling;J. Propul. Power,2006

3. A Visualization Study of Secondary Flows in Cascades,1954

4. Crossflows in a Turbine Cascade Passage;ASME J. Eng. Power,1980

5. Three-Dimensional Flow Within a Turbine Cascade Passage;ASME J. Eng. Power,1977

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3