Data-Driven Approach for Identifying Mistuning in As-Manufactured Blisks

Author:

Kelly Sean1,Lupini Andrea1,Epureanu Bogdan I.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109

Abstract

Abstract Sector-to-sector geometry or material property variations in as-manufactured bladed disks, or blisks, can result in significantly greater vibration responses during operation compared to nominally cyclic symmetric designs. The dynamics of blisks are sensitive to these unavoidable deviations, known as mistuning, making the identification of mistuning in as-manufactured blisks necessary for accurately predicting their vibration. Previous approaches to identify such mistuning parameters often require the identification of modal information or blade-isolation techniques such as blade detuning using masses or adding damping pads. However, modal information can be difficult to obtain accurately even in optimal bench conditions. Additionally, in practice it can be difficult to isolate individual blades by restricting blade motion or detuning individual blades through added masses due to geometric constraints. In this paper, we present a method for mistuning identification using a data-driven approach based on a neural network. Here, mistuning in all sectors of blisks with the same nominal geometry can be identified by using a small number of forced responses and the forcing phase information from traveling-wave excitation. In this approach, no system or sector-level modal response information, restrictive blade isolation, or mass detuning are required. Validation of this approach is presented using a finite element blisk model containing stiffness mistuning within the blades to create computationally generated surrogate data. It is shown that mistuning can be predicted accurately using forced responses containing a significant amount of absolute and relative measurement noise, mimicking responses collected from experimental measurements.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3