The Oriented Spray Cooling System for Heat Rejection and Evaporation

Author:

Bowman Charles F.1,Taylor Robert E.2,Hubble Jerry D.3

Affiliation:

1. Chuck Bowman Associates, Inc., 110 Henderson Bend Road, Knoxville, TN 37931

2. 4710 Ridge Crest Road, Hixson, TN 37343; Tennessee Valley Authority, 400 West Summit Hill Drive, Knoxville, TN 37902

3. 175 Ridge Circle Road, Andersonville, TN 37705; Mesa Associates, Inc., 10604 Murdock Drive, Knoxville, TN 37932

Abstract

Abstract Spray ponds offer significant advantages over mechanical draft cooling towers (MDCTs) including superior simplicity and operability, lower preferred power requirements, and lower capital and maintenance costs. Unlike a conventional spray pond in which spray nozzles are arranged in a flat bed and water is sprayed upward, the oriented spray cooling system (OSCS) is an evolutionary spray pond design in which nozzles are mounted on spray trees arranged in a circle and are tilted at an angle oriented toward the center of the circle. As a result, each nozzle is exposed to essentially ambient air as water droplets drag air into the spray region while the warm air concentrated in the center of the circle rises. Both of these effects work together to increase air flow through the spray region. Increased air flow reduces the local wet-bulb temperature of the air in the spray pattern, promoting heat transfer and more efficient cooling. The authors have developed analytical models to predict the thermal performance of the OSCS that are based on classical heat and mass transfer and kinetic vector relationships for spherical water droplets that rely only on generic experimental thermal performance data. Therefore, the model is not limited in application with regard to spray pressure or nozzle spacing or orientation and is not limited by droplet size considerations. This paper describes specific details such as nozzle type, orientation, and drop spectrum and details on the analytical model never before published that are used to predict the OSCS performance. The paper compares the predicted performance of the OSCS with the rigorous full-scale field test results that were measured in compliance with Nuclear Regulatory Commission requirements at the Columbia Generating Station where the ultimate heat sink (UHS) is two OSCS.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference15 articles.

1. Performance of a Spray Pond for Nuclear Power Plant Ultimate Heat Sink,1975

2. Heat, Mass, and Momentum Transfer From Sprays to Air in Cross Flow,1979

3. Effect of Air-Vapor Dynamics on Interference for Spray Cooling Systems,1977

4. Water Cooling Arrangement,1976

5. An Atmospheric Spray Cooling Model,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3