Performance Prediction of a Model Rotary Air Preheater Through Porous Media Approach

Author:

Padhi Manas Ranjan1,Ghose Prakash1

Affiliation:

1. KIIT Deemed to be University School of Mechanical Engineering, , Bhubaneswar, Odisha 751024 , India

Abstract

Abstract Rotary regenerative heat exchangers or rotary regenerators are used for various heat recovery applications in order to fulfill the energy requirements. Rotary air preheater is a rotary regenerative heat exchanger which is widely used in thermal power plants to recover heat energy from exhaust flue gases. Several numerical works are being carried out to improve the performance and reduce the cost of the rotary air preheater. However, the accurate modeling of the internal structure of the matrix demands a lot of CPU power and is a big challenge for researchers. To overcome this problem, the rotary matrix of the preheater can be modeled using a porous media approach. But a thorough investigation is required to evaluate its performance. In this work, rotary air preheater simulations were carried out by applying a porous media approach. The effects of different operating conditions, such as speed of rotor, the mass flowrate of incoming fluids, material of matrix, and inlet temperature of hot fluid on the performance of rotary air preheater were investigated. Simulation results were validated with the results obtained from the experimentation performed in-house. The effect of fluid flowrates on pressure drop was also studied. It has been observed that the rotational speed of the rotor significantly affects the performance of the preheater, while the inlet temperature of hot fluid has a negligible effect on performance.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3