Critical Analysis of the New High Cycle Fatigue Assessment Procedure From ASME B31.3—Appendix W

Author:

Jaćimović Nikola1,Helgesen Sondre Luca2

Affiliation:

1. Danieli & C. Officine Meccaniche S.p.A, Via Nazionale 41, Buttrio, UD 33042, Italy

2. Stressman Engineering AS, Dokkvegen 10, Porsgrunn 3920, Norway

Abstract

Abstract ASME B31.3, the leading process piping system design code, has included in its 2018 edition a new procedure for evaluation of high cycle fatigue in process piping systems. As stated in the Appendix W of ASME B31.3-2018, this new procedure is applicable to any load resulting in the stress range in excess of 20.7 MPa (3.0 ksi) and with the total number of cycles exceeding 100,000. However, this new procedure is based on the stress range calculation typical to ASME B31 codes which underestimates the realistic expansion stress range by a factor of ∼2. While the allowable stress range used typically for fatigue evaluation of piping systems is adjusted to take into consideration this fact, the new fatigue design curves seem not to take it into account. Moreover, the applicability of the new design procedure (i.e., welded joint fatigue design curves) to the components which tend to fail away from the bends is questionable. Two examples are presented at the end of the paper in order to substantiate the indicated inconsistencies in the verification philosophy.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference20 articles.

1. Process Piping;ASME,2018

2. Uncertainties in Expansion Stress Evaluation Criteria in Piping Codes;Int. J. Pressure Vessels Piping,2019

3. Fatigue Analysis of Pressure Vessels With Twice-Yield Plastic FEA,2001

4. Twice-Yield Method for Assessment of Fatigue Caused by Fast Thermal Transient According to 2007 Section VIII-Division 2 of ASME B&PV Code,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3