Effect of Flexoelectricity on Band Structures of One-Dimensional Phononic Crystals

Author:

Liu Chenchen1,Hu Shuling1,Shen Shengping1

Affiliation:

1. State Key Laboratory of Strength and Vibration for Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China e-mail:

Abstract

As a size-dependent theory, flexoelectric effect is expected to be prominent at the small scale. In this paper, the band gap structure of elastic wave propagating in a periodically layered nanostructure is calculated by transfer matrix method when the effect of flexoelectricity is taken into account. Detailed calculations are performed for a BaTiO3-SrTiO3 two-layered periodic structure. It is shown that the effect of flexoelectricity can considerably flatten the dispersion curves, reduce the group velocities of the system, and decrease the midfrequency of the band gap. For periodic two-layered structures whose sublayers are of the same thickness, the width of the band gap can be decreased due to flexoelectric effect. It is also unveiled from our analysis that when the filling fraction is small, wider gaps at lower frequencies will be acquired compared with the results without considering flexoelectric effect. In addition, the band gap structures will approach the classical result as the total thickness of the unit cell increases. Our results indicate that the scaling law does not hold when the sizes of the periodic structures reach the nanoscale dimension. Therefore, the consideration of flexoelectric effect on the band structure of a nanosized periodic system is significant for precise manipulation of elastic wave propagation and its practical application.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3