Advanced Quasi-Steady State Approximation for Chemical Kinetics

Author:

Girimaji Sharath S.1,Ibrahim Ashraf A.2

Affiliation:

1. e-mail:

2. e-mail:  Aerospace Engineering Department, Texas A&M University, College Station, TX 77843

Abstract

The computational feasibility of many systems with large degrees of freedom such as chemically reacting systems hinges on the reduction of the set to a manageable size with a minimal loss of relevant information. Several sophisticated reduction techniques based on different rationales have been proposed; however, there is no consensus on the best approach or method. While the search for simple but accurate schemes continues, the classical quasi-steady state assumption (QSSA), despite serious shortcomings, remains popular due to its conceptual and computational simplicity. Invoking the similarity between a reduced invariant manifold and a streamline in fluid flow, we develop an advanced QSSA procedure which yields the accuracy of more complex reduction schemes. This flow-physics inspired approach also serves to reconcile the classical QSSA approach with recent methods such as functional equation truncation (FET) and intrinsic low dimensional manifold (ILDM) approaches.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skeletal Kinetics Reduction for Astrophysical Reaction Networks;The Astrophysical Journal Supplement Series;2024-05-29

2. On air-chemistry reduction for hypersonic external flow applications;International Journal of Heat and Fluid Flow;2015-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3