Effect of Ground Boundary Condition on Near-Field Wingtip Vortex Flow and Lift-Induced Drag

Author:

Lu A.1,Lee T.1

Affiliation:

1. Department of Mechanical Engineering, McGill University, Montreal, QC H3A 2K6, Canada

Abstract

Abstract The ground proximity is known to induce an outboard movement and suppression of the wingtip vortices, leading to a reduced lift-induced drag. Depending on the ground boundary condition, a large scatter exists in the published lift-induced drag and vortex trajectory. In this experiment, the ground boundary condition-produced disparity in the vortex strength and induced drag were evaluated. No significant discrepancy appeared for a ground distance or clearance larger than 30% chord. As the stationary ground was further approached, there was the appearance of a corotating ground vortex (GV), originated from the downstream progression of a spanwise ground vortex filament, which added vorticity to the tip vortex, leading to a stronger tip vortex and a larger lift-induced drag compared to the moving ground. For the moving ground, the ground vortex was absent. In close ground proximity, the rollup of the high-pressure fluid flow escaped from the wing's tip always caused the formation of a counter-rotating secondary vortex, which dramatically weakened the tip vortex strength and produced a large induced-drag reduction. The moving ground effect, however, induced a stronger secondary vortex, leading to a smaller lift-induced drag and a larger outboard movement of the tip vortex as compared to the stationary ground effect.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3