Determination of Shakedown Boundary and Failure-Assessment-Diagrams of Cracked Pipe Bends

Author:

Elsaadany Mostafa S.1,Younan Maher Y. A.2,Abdalla Hany F.3

Affiliation:

1. Department of Bioengineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 e-mail:

2. Professor of Mechanics and Design Associate Dean for Undergraduate Studies School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt e-mail:

3. Assistant Professor of Mechanical Design and Solid Mechanics Department of Mechanical Engineering, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt e-mail:

Abstract

Determination of shakedown (SD) boundaries of 90-degree plain smooth pipe bends has recently received substantial attention by several researchers. However, scarce or almost no solid information is found within the literature regarding the determination of the shakedown boundary of cracked pipe bends. The current research presents two additions to the literature, namely, determination of shakedown boundary for a circumferentially cracked 90-degree pipe bend via a simplified technique utilizing the finite element (FE) method and introduction of failure-assessment diagrams (FADs) in compliance with the API 579 failure-for-service assessment of pressure vessel and piping components. The analyzed cracked pipe bend is subjected to the combined effect of steady internal pressure spectrum and cyclic in-plane closing (IPC) and opening (IPO) bending moments. Line spring elements (LSEs) are embedded in quadratic shell elements to model part-through cracks. FAD is obtained through linking the J-integral fracture mechanics parameter with the shakedown limit moments of the analyzed cracked 90-degree pipe bend. The LSE outcomes illustrated satisfactory results in comparison to the results of two verification studies: stress intensity factor (SIF) and limit load. Additionally, full elastic-plastic (ELPL) cyclic loading finite element analyses are conducted and the outcomes revealed very good correlation with the results obtained via the simplified technique. The maximum load carrying capacity (limit moment) and the elastic domain are also computed thereby generating a Bree diagram for the cracked pipe bend. Finally, Crack growth analysis is presented to complement the FAD.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3