Evidence-Theory-Based Reliability Analysis From the Perspective of Focal Element Classification Using Deep Learning Approach

Author:

Chen L.1,Zhang Z.1,Yang G.1,Zhou Q.2,Xia Y.3,Jiang C.1

Affiliation:

1. Hunan University Key Laboratory of Advanced Design and Simulation Techniques for Special Equipment, College of Mechanical and Vehicle Engineering, , Changsha 410082 , China

2. Tsinghua University Institute of Nuclear and New Energy Technology, , Beijing 100084 , China

3. Institute of Spacecraft System Engineering , Beijing 100094 , China

Abstract

Abstract Epistemic uncertainty is widespread in reliability analysis of practical engineering products. Evidence theory is regarded as a powerful model for quantifying and analyzing epistemic uncertainty. However, the heavy computational burden has severely hindered its application in practical engineering problems, which is essentially caused by the repeated extreme analysis of limit-state function (LSF). In order to address the issue, this paper proposes a novel method to solve the evidence-theory-based reliability analysis (ETRA). It transforms the conventional ETRA problem into the classification of three classes of joint focal elements (JFEs) and then solves the classification problem effectively through a deep learning approach. The core of solving an ETRA problem is to determine whether the joint focal element is located in the reliable region, failure region, or intersected with the LSF. A spatial position feature reduction and arrangement method is proposed to classify the JFEs, which can effectively reduce the feature dimension and take into account the integrity and correlation of features. The stacked autoencoders model is then constructed and updated by extracting the spatial position features of the sampled JFEs to achieve high-accuracy classification of the remaining JFEs, and the reliability interval is calculated efficiently according to the classification results. Finally, the effectiveness of the proposed method is demonstrated using several numerical examples.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new solution framework for time-dependent reliability-based design optimization;Computer Methods in Applied Mechanics and Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3