Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72

Author:

Rainey K. N.1,You S. M.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019-0023

2. School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742, Korea

Abstract

The present research is an experimental study of “double enhancement” behavior in pool boiling from heater surfaces simulating microelectronic devices immersed in saturated FC-72 at atmospheric pressure. The term “double enhancement” refers to the combination of two different enhancement techniques: a large-scale area enhancement (square pin fin array) and a small-scale surface enhancement (microporous coating). Fin lengths were varied from 0 (flat surface) to 8 mm. Effects of this double enhancement technique on critical heat flux (CHF) and nucleate boiling heat transfer in the horizontal orientation (fins are vertical) are investigated. Results showed significant increases in nucleate boiling heat transfer coefficients with the application of the microporous coating to the heater surfaces. CHF was found to be relatively insensitive to surface microstructure for the finned surfaces except in the case of the surface with 8-mm-long fins. The nucleate boiling and CHF behavior has been found to be the result of multiple, counteracting mechanisms: surface area enhancement, fin efficiency, surface microstructure (active nucleation site density), vapor bubble departure resistance, and re-wetting liquid flow resistance. [S0022-1481(00)02603-7]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 191 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3