Finite Element Analysis of Multiphase Viscoelastic Solids

Author:

Brinson L. C.1,Knauss W. G.1

Affiliation:

1. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125

Abstract

The properties of composite solids containing multiple, viscoelastic phases are studied numerically. The dynamic correspondence principle of viscoelasticity is utilized in a finite element model to solve boundary value problems for obtaining global complex moduli of the composite. This numerical procedure accounts for the coupled interactive deformation of the phases and thus the resultant accuracy is limited only by that of finite element analyses in general. The example composite considered in this study contains cylindrical viscoelastic inclusions embedded in a viscoelastic matrix. This investigation focuses on the global composite moduli and their relationship to the individual phase properties as a function of volume fraction. A given phase material is shown to have differing effects on the composite properties, depending on whether it is the continuous or the included phase: In general, the composite moduli are dominated by the matrix material. Comparison is made with two simple analytical models for global effective moduli of composites. “Upper Bounds” reproduce the behavior over the whole frequency range when the matrix is the “stiffer” of the two solids while the “lower bond” associates with the converse arrangement, also over the whole frequency range. The nature of time-temperature behavior of multiphase composite materials is examined in a companion paper.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3