Limit-Cycle Analysis of Three-Dimensional Flexible Shaft/Rigid Rotor/Autobalancer System With Symmetric Rigid Supports

Author:

Jung DaeYi1,DeSmidt H. A.2

Affiliation:

1. Korea Institute of Research and Medical Sciences, 75 Nowon-ro Nowon-gu, Seoul 01812, South Korea e-mail:

2. Associate Professor Mechanical Aerospace and Biomedical Engineering Department, University of Tennessee, 234 Dougherty Engineering Building, Knoxville, TN 37996-2210 e-mail:

Abstract

In recent years, there has been much interest in the use of automatic balancing devices (ABD) in rotating machinery. Autobalancers consist of several freely moving eccentric balancing masses mounted on the rotor, which, at certain operating speeds, act to cancel rotor imbalance. This “automatic balancing” phenomenon occurs as a result of nonlinear dynamic interactions between the balancer and rotor wherein the balancer masses naturally synchronize with the rotor with appropriate phase to cancel the imbalance. However, due to inherent nonlinearity of the autobalancer, the potential for other undesirable nonsynchronous limit-cycle behavior exists. In such situations, the balancer masses do not reach their desired synchronous balanced positions resulting in increased rotor vibration. To explore this nonsynchronous behavior of ABD, the unstable limit-cycle analysis of three-dimensional (3D) flexible shaft/rigid rotor/ABD/rigid supports described by the modal coordinates has been investigated here. Essentially, this paper presents an approximate harmonic analytical solution to describe the limit-cycle behavior of ABD–rotor system interacting with flexible shaft, which has not been fully considered by ABD researchers. The modal shape of flexible shaft is determined by using well-known fixed–fixed boundary condition due to symmetric rigid supports. Here, the whirl speed of the ABD balancer masses is determined via the solution of a nonlinear characteristic equation. Also, based upon the analytical limit-cycle solutions, the limit-cycle stability of three primary design parameters for ABD is assessed via a perturbation and Floquet analysis: the size of ABD balancer mass, the ABD viscous damping, and the relative axial location of ABD to the imbalance rotor along the shaft. The coexistence of the stable balanced synchronous condition and undesirable nonsynchronous limit-cycle is also studied. It is found that for certain combinations of ABD parameters and rotor speeds, the nonsynchronous limit-cycle can be made unstable, thus guaranteeing asymptotic stability of the synchronous balanced condition at the supercritical shaft speeds between each flexible mode. Finally, the analysis is validated through numerical simulation. The findings in this paper yield important insights for researchers wishing to utilize ABD in flexible shaft/rigid rotor systems and limit-cycle mitigation.

Publisher

ASME International

Subject

General Engineering

Reference20 articles.

1. Automatic Dynamic Balancers (Part 2-Ring, Pendulum, Ball Balancers);Mach. Des.,1950

2. Automatic Balancer (Pendulum Balancer);Bull. JSME,1986

3. Autobalancing of Rotors;J. Sound Vib.,1986

4. Position Error Occurrence in Self Balancers Used on Rigid Rotors of Rotating Machinery;Mech. Mach. Theory,1998

5. Automatic Balancer (Static Balancing and Transient Response of a Multi-Ball Balancer);Trans. Jpn. Soc. Mech. Eng., Part C,1993

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3