Analysis of Engine Vibration and Noise Induced by a Valve Train Element Combined With the Dynamic Behaviors

Author:

Guo Jie1,Cao Yipeng1,Zhang Wenping1,Zhang Xinyu1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China e-mail:

Abstract

The engine vibration and noise induced by a valve train element are analyzed through the modeling and experiment method. The valve train dynamics are first studied to make clear the sources of the valve train noise. The component flexibility and inertia of mass are all taken into consideration as well as the contact or impact behaviors. The contact or impact forces are applied on the combined model of a combined structure. The resulting vibration responses at the outer surfaces are considered to be the boundary conditions of the acoustic model. The acoustic model is built by the boundary element method. The analysis results show that the noise induced by the valve train element is mainly in the 500–800 Hz 1/3 octave bands. The noise in this frequency range is related to not only the resonance of oil pan and valve cover but also the overall combined structure stiffness. And moreover, the resonance of the valve train element excited by the harmonic of the camshaft rotational frequency has heightened the noise radiation in this frequency range. The noise in the low-frequency range is determined by the exciting components of the cam profile, and that in the high-frequency range are produced mainly by the valve–seat impact and by the cam–tappet impact. The analysis results are proved well by comparison with the experimental results. Thus, the results are very useful for understanding the source characteristics of valve train noise.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3