Optimization of a Thermoelectric Cooler for Time-Varying Heat Load and Sink Temperature

Author:

Pearson Matthew R.1,Lents Charles E.1

Affiliation:

1. Thermal Fluid Sciences Department, United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06118 e-mail:

Abstract

Thermoelectric coolers (TECs) are solid-state cooling devices that operate on the Seebeck effect. They can be used in electronic cooling applications as well as other refrigeration systems. Among the various factors that affect TEC performance within a system, it has been shown that the thermal conductance is an important parameter, which can also be easily altered during the design of a TEC to deliver optimal TEC performance for a given application. However, these studies have considered only a fixed heat load and heat sink temperature, whereas in many realistic applications these quantities can vary. A procedure has been developed for optimizing the thermal conductance of a TEC based on a typical operating cycle of time-varying heat load and sink temperature, while permitting constraints that ensure that one or more worst-case operating conditions can also be met. This procedure is valid for any arbitrary heat load and sink temperature functions; however, for illustrative purposes, a simple heat load function at fixed sink temperature (and a sink temperature function at fixed heat load) is used. The results show that the optimal conductance can strongly depend on the operating cycle, and the corresponding reduction in electrical input work (and corresponding increase in net coefficient of performance (COP)) can be significant.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference18 articles.

1. General Principles and Theoretical Considerations,1995

2. Nanoscale Heat Transfer and Nanostructured Thermoelectrics;IEEE Trans. Compon. Packag. Technol.,2006

3. Optimum Design of a Thermoelectric Device;Semicond. Sci. Technol.,2002

4. Comprehensive System-Level Optimization of Thermoelectric Devices for Electronic Cooling Applications;IEEE Trans. Compon. Packag. Technol.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3