Effect of Cyclic Loading on Ductile Fracture Resistance

Author:

Marschall C. W.1,Wilkowski G. M.1

Affiliation:

1. Battelle, Columbus, OH 43201

Abstract

The influence of cyclic loading on ductile fracture toughness was examined from limited experimental data available in the literature. The review indicated that, in the absence of global compressive loads during the unloading cycle (R ≥ 0), the total crack extension generally is the sum of the monotonic component (Δamono) and the cyclic component (Δacyclic). The former can be obtained from the monotonic J-R curve and the latter from a fatigue-crack-growth curve. When large global compressive loads are developed during unloading (R<0), the review indicated that simply summing Δamono and Δacyclic gives an under prediction of the actual crack extension in load cycling tests. Thus, it appears that the local compressive strains lower a material’s normal monotonic fracture resistance in a region immediately ahead of the crack following the load reversal. Although few data are available in this regime of cyclic loading, it is likely that the magnitude of the loss of monotonic toughness depends on frequency of unloadings, R-ratio, and material. For ferritic steels susceptible to strain aging, temperature and strain rate also are likely to be important. The review also examined the applicability of various fracture mechanics parameters, including those based on deformation plasticity and those based on incremental plasticity, in quantifying cyclic-loading effects. While incremental plasticity parameters (for example T*) appear promising, they may be time-consuming and costly to develop. Until such advanced parameters are available, it is likely that empirical correlations involving deformation J will have to be developed to handle cyclic loading effects. Finally, the significance of the findings reported herein relative to the performance of flawed nuclear piping subjected to cyclic loading is discussed. It appears that circumferential cracks are of greater concern in seismic events than are axial cracks because the former may experience negative R-ratios.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3