CO2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles: Part B — With Air-Blown Combustion and CO2 Physical Absorption

Author:

Chiesa Paolo1,Lozza Giovanni1

Affiliation:

1. Politecnico di Milano, Milan, Italy

Abstract

This paper analyzes the fundamentals of IGCC power plants with carbon dioxide removal systems, by a cycle configuration alternative to the one discussed in Part A (with Oxygen-Blown Combustion). The idea behind this proposal is to overcome the major drawbacks of the previous solution (large oxygen consumption and re-design of the gas turbine unit), by means of a semiclosed cycle using air as the oxidizer. Consequently, combustion gases are largely diluted by nitrogen and cannot be simply compressed to produce liquefied CO2 for storage or disposal. However, CO2 concentration remains high enough to make separation possible by a physical absorption process. It requires a re-pressurization of the flow subtracted from the cycle, with relevant consequences on the plant energy balance. The configuration and the thermodynamic performance of this plant concept are extensively addressed in the paper. As in the first part, the influence of the pressure ratio is discussed, but values similar to the ones adopted in commercial heavy-duty machines provide here acceptable performance. Proper attention was paid to the impact of the absorption process on the energy consumption. The resulting net overall efficiency is again in the 38–39% range, with assumptions fully comparable to the ones of Part A. Finally, we demonstrated that the present scheme enables the use of unmodified machines, but large additional equipment is required for exhausts treatment and CO2 separation. A final comparison between the two semiclosed cycle concepts was therefore addressed.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cryogenic CO2 capture from oxy-combustion flue gas by a hybrid distillation + physical absorption process;Chemical Engineering Research and Design;2023-11

2. Natural Gas Fired Combined Cycles With Low CO2 Emissions;Journal of Engineering for Gas Turbines and Power;2000-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3