Industrial Microchannel Devices: Where Are We Today?

Author:

Pua Lee M.1,Rumbold S. O.1

Affiliation:

1. Meggitt (UK), Ltd., Dorset, UK

Abstract

Heatric has been involved in the commercial design and manufacturing of “micro/milli” scale heat exchanger core matrices called Printed Circuit Heat Exchangers (PCHEs) since 1985. These core matrices are formed by diffusion bonding together plates into which fluid flow microchannels have (usually) been formed by photo-chemical machining. Complex fluid circuitry is readily implemented with this technique. Diffusion bonding is a ‘solid-state joining’ process creating a bond of parent metal strength and ductility. The complete microchannel heat exchangers are highly compact, typically comprising about one-fifth the size and weight of conventional heat exchangers for the same thermal duty and pressure drops. PCHEs can be constructed out of a range of materials, including austenitic stainless steels suitable for design temperatures up to 800°C, and nickel alloys such as Incoloy 800HT suitable for design temperatures more than 900°C. Single units ranging from a few grams up to 100 tonnes have been manufactured. Currently there are thousands of tons of such microchannel matrix in hundreds of services — many of them arduous duties on offshore oil and gas platforms where the size and weight advantages of microchannel heat exchangers are of obvious benefit. Whilst these matrices are predominantly involved in thermally simple two-fluid heat exchange, albeit at pressures up to 500 bar, PCHEs have also been used for many multi-stream counter-flow heat exchangers. However the field of applications is very varied, including specialised chemicals processing, and PCHEs are even to be found orbiting the Earth in the International Space Station! Due to the inherent flexibility of the etching process, the basic construction may readily be applied to both a wider range, and more complex integration of process unit operations. Chemical reaction, rectification, stripping, mixing, and absorption, as well as boiling and condensation, can be incorporated into compact integrated process modules. Crucially, the resulting degree of compactness has led printed circuit technology to be the enabling technology in certain duties. Techniques for chemical coating onto the surfaces of channels continue to evolve, with applicability both to protective coatings and catalytically active coatings. We will describe a selection of innovative printed circuit technology examples. Alongside the more esoteric, Heatric is actively extending printed circuit technology to adapt to new market opportunities such as nuclear power generation plant and fuel cell systems. These applications perhaps represent two extremes of the both size and process integration, and thus aptly serve to demonstrate the range of industrial use of microchannel devices.

Publisher

ASMEDC

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3