Dynamic Modeling of a Reformed Methanol Fuel Cell System Using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models

Author:

Justesen Kristian K.1,Andreasen Søren Juhl2,Shaker Hamid Reza3

Affiliation:

1. e-mail:

2. Associate Professor e-mail:

3. Assistant Professor e-mail:  Department of Energy Technology, Aalborg University, Aalborg East 9220, Denmark

Abstract

In this work, a dynamic matlab Simulink model of an H3-350 reformed methanol fuel cell (RMFC) stand-alone battery charger produced by Serenergy® is developed on the basis of theoretical and empirical methods. The advantage of RMFC systems is that they use liquid methanol as a fuel instead of gaseous hydrogen, which is difficult and energy-consuming to store and transport. The models include thermal equilibrium models of the individual components of the system. Models of the heating and cooling of the gas flows between components are also modeled and adaptive neuro-fuzzy inference system models of the reforming process are implemented. Models of the cooling flow of the blowers for the fuel cell and the burner which supplies process heat for the reformer are made. The two blowers have a common exhaust, which means that the two blowers influence each other's output. The models take this into account using an empirical approach. Fin efficiency models for the cooling effect of the air are also developed using empirical methods. A fuel cell model is also implemented based on a standard model, which is adapted to fit the measured performance of the H3-350 module. All of the individual parts of the model are verified and fine-tuned through a series of experiments and are found to have mean absolute errors between 0.4% and 6.4% but typically below 3%. After a comparison between the performance of the combined model and the experimental setup, the model is deemed to be valid for control design and optimization purposes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3