Cycling-Induced Microstructural Changes in Alloy Anodes for Lithium-Ion Batteries

Author:

Adams Jacob N.1,Nelson George J.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899

Abstract

Abstract High-capacity electrochemical alloying materials, such as tin and tin-based alloys, present an opportunity for the advancement of lithium-ion batteries. However, the destructive effects of volumetric expansion must be mitigated in order to sustain this high capacity during extended cycling. One way to mitigate these effects is by alloying Sn with more malleable metals to accommodate the strain related to severe volumetric expansion. Ex situ X-ray microtomography data of cycled Cu6Sn5 pellets were used to quantify the microstructural changes that occur during lithiation and delithiation. The microtomography data were segmented into three distinct phases to evaluate phase size distributions, specific surface area, and tortuosity. Electrodes lithiated and then delithiated showed the most substantial reduction in overall phase sizes. This suggests that full lithiation of the Sn followed by partial delithiation of the Li4.4Sn to Li2CuSn can cause substantial microstructural changes related to volume expansion on lithiation and structural collapse upon delithiation. When considering other microstructural characteristics, this subset of the electrodes analyzed showed the highest tortuosity values. These results show that in addition to the mechanical degradation of the electrodes, excessive volume expansion can also influence transport networks in the active material and supporting phases of the electrode. While based on studies of the active–inactive alloy Cu6Sn5 for lithium-ion battery applications, the insights obtained are expected to be applicable to other alloy electrodes and battery chemistries.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3