Non-Dimensional Parameters for Comparing Conventional and Counter-Rotating Turbomachines

Author:

Waldren J. J.1,Clark C. J.1,Grimshaw S. D.1,Pullan G.1

Affiliation:

1. Whittle Laboratory, University of Cambridge, 1 JJ Thomson Avenue, Cambridge CB3 0DY, UK

Abstract

Abstract Counter-rotating turbomachines have the potential to be high efficiency, high power density devices. Comparisons between conventional and counter-rotating turbomachines in the literature make multiple and often contradicting conclusions about their relative performance. By adopting appropriate non-dimensional parameters, based on relative blade speed, the design space of conventional machines can be extended to include those with counter-rotation. This allows engineers familiar with conventional turbomachinery to transfer their experience to counter-rotating machines. By matching appropriate non-dimensional parameters, the loss mechanisms directly affected by counter-rotation can be determined. A series of computational studies are performed to investigate the relative performance of conventional and counter-rotating turbines (CRTs) with the same non-dimensional design parameters. Each study targets a specific loss source, highlighting which phenomena are directly due to counter-rotation and which are solely due to blade design. The studies range from two-dimensional blade sections to three-dimensional finite radius stages. It is shown that, at hub-to-tip ratios (HTRs) approaching unity, with matched non-dimensional design parameters, the stage efficiency and work output are identical for both types of machines. However, a CRT in the study is shown to have an efficiency advantage over a conventional machine of up to 0.35 percentage points for a HTR of 0.65. This is due to differences in absolute velocity producing different spanwise blade designs.

Publisher

ASME International

Subject

Mechanical Engineering

Reference26 articles.

1. Analysis of Two-Stage Counterrotating Turbine Efficiencies in Terms of Work and Speed Requirements;Wintucky,1958

2. Basic Analysis of Counter-Rotating Turbines;Cai,1990

3. SABRE;Reaction Engines Ltd,2018

4. Contrarotating Turbine Aerodesign for an Advanced Hypersonic Propulsion System;Paniagua;J. Propul. Power,2008

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3