A Survey With Numerical Assessment of Classical and Refined Theories for the Analysis of Sandwich Plates

Author:

Carrera E.1,Brischetto S.1

Affiliation:

1. Aeronautics and Space Engineering Department, Politecnico di Torino, Turin 10129, Italy

Abstract

A large variety of plate theories are described and assessed in the present work to evaluate the bending and vibration of sandwich structures. A brief survey of available works is first given. Such a survey includes significant review papers and latest developments on sandwich structure modelings. The kinematics of classical, higher order, zigzag, layerwise, and mixed theories is described. An exhaustive numerical assessment of the whole theories is provided in the case of closed form solutions of simply supported panels made of orthotropic layers. Reference is made to the unified formulation that has recently been introduced by the first author for a plate/shell analysis. Attention has been given to displacements, stresses (both in-plane and out-of-plane components), and the free vibration response. Only simply supported orthotropic panels loaded by a transverse distribution of bisinusoidal pressure have been analyzed. Five benchmark problems are treated. The accuracy of the plate theories is established with respect to the length-to-thickness-ratio (LTR) geometrical parameters and to the face-to-core-stiffness-ratio (FCSR) mechanical parameters. Two main sources of error are outlined, which are related to LTR and FCSR, respectively. It has been concluded that higher order theories (HOTs) can be conveniently used to reduce the error due to LTR in thick plate cases. But HOTs are not effective in increasing the accuracy of the classical theory analysis whenever the error is caused by increasing FCSR values; layerwise analysis becomes mandatory in this case.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 272 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3