Plane-Strain Shear Dislocation on a Leaky Plane in a Poroelastic Solid

Author:

Song Yongjia12,Rudnicki John W.34

Affiliation:

1. Department of Astronautics and Mechanics, Harbin Institute of Technology, Postbox 344, 92 West Dazhi Street, Harbin 150001, China;

2. Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 e-mail:

3. Fellow ASME Department of Civil and Environmental Engineering, Northwestern University;

4. Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 e-mail:

Abstract

Solutions for the stress and pore pressure p are derived due to sudden introduction of a plane strain shear dislocation on a leaky plane in a linear poroelastic, fluid-infiltrated solid. For a leaky plane, y=0, the fluid mass flux is proportional to the difference in pore pressure across the plane requiring that Δp=R∂p/∂y, where R is a constant resistance. For R=0 and R→∞, the expressions for the stress and pore pressure reduce to previous solutions for the limiting cases of a permeable or impermeable plane, respectively. Solutions for the pore pressure and shear stress on and near y=0 depend significantly on the ratio of x and R. For the leaky plane, the shear stress at y=0 initially increases from the undrained value, as it does from the impermeable plane, but the peak becomes less prominent as the distance x from the dislocation increases. The slope (∂σxy/∂t) at t=0 for the leaky plane is always equal to that of the impermeable plane for any large but finite x. In contrast, the slope ∂σxy/∂t for the permeable fault is negative at t=0. The pore pressure on y=0 initially increases as it does for the impermeable plane and then decays to zero, but as for the shear stress, the increase becomes less with increasing distance x from the dislocation. The rate of increase at t=0 is equal to that for the impermeable fault.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3