Improved Feasible Load Range and Its Effect on the Frequency Response of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristics1

Author:

Inamoto Kazuya1,Ishida Sachiko2

Affiliation:

1. Department of Mechanical Engineering, Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan

2. Mem. ASME Department of Mechanical Engineering, School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan e-mail:

Abstract

We describe herein a method for extending the load range of a vibration isolator using a foldable cylinder consisting of a torsional buckling pattern and evaluate the vibration isolating performance through excitation experiments. A previous study determined that the foldable cylinder is bistable and acts as a vibration isolator with nonlinear characteristics in a displacement region, where the spring stiffness is zero. Its spring characteristics and vibration isolating performance were clarified by numerical analysis and excitation experiments. The findings indicated that the vibration in a certain frequency range is reduced where the spring stiffness is zero. However, this vibration isolator has a disadvantage in that it can only support an initial load that transfers to the zero-spring-stiffness region. Therefore, in this research, we improve the position of the linear spring attached to the isolator. As a result, the initial load range is extended by two to four times that of the conventional vibration isolator. Furthermore, the isolating performance is maintained even when the initial load is changed within a given load range.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Subject

General Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3