Nanoscratch Resistance and Nanotribological Performance of Ti/MoS2 Coating on Al-Si Alloy Deposited by Pulse Laser Deposition Technique

Author:

Banday Summera1,Wani M. F.2

Affiliation:

1. Tribology Laboratory, Department of Mechanical Engineering, NIT, Hazratbal, Srinagar 190006, Jammu and Kashmir, India

2. Tribology Laboratory, Department of Mechanical Engineering, NIT, Hazratbal, Srinagar 190006, Jammu and Kashmir, India e-mail:

Abstract

Ti/MoS2 coating was deposited by pulse laser deposition technology on Al-Si substrate. The microstructure, elemental analysis, nanotribological behavior of coating was investigated. The coating was composed of Ti, Mo, S, and O with typical diffraction peak around 2θ range from 30 deg to 70 deg. Nanoscratch with ramp loading was performed at low loads. The scratch test with ramp normal loading was analyzed for failure of coating in three ranges, viz., range A, range B, and range C. Scratch test result shows that the peeling of coating occurred at the normal load of 1327.75 μN and the lateral load of 75.96 μN. Nanowear with 2, 4, 6, 8, 10 number of cycles was performed at low load 100 μN. Nanowear results shows that wear rate decreases with increase in wear cycles, which attributed the self-lubricating property of Ti/MoS2 coating. Also, Ti/MoS2 coating display smooth wear path with no debris and cracks, which attributed plastic flow of coating around impression. Thus, mode of wear mechanism is mainly ductile and abrasive.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3