Affiliation:
1. Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Abstract
In this paper the feasibility of actively suppressing rotor and blade vibration via shaft-based actuation is studied. A mathematical model is derived, taking into account the special dynamical characteristics of coupled rotor-blade systems, such as centrifugal stiffened blades and parametric vibration modes. An investigation of controllability and observability shows that if the blades are properly mistuned, it is possible to suppress shaft as well as blade vibration levels by using only shaft-based actuation and sensing; though, in tuned bladed systems, shaft as well as blade actuation and sensing are required. In order to cope with the time-variant dynamics of the coupled rotor-blade system, a periodic time-variant modal controller is designed, implemented, and experimentally tested. A test rig built by four flexible blades is specially designed for this purpose. The rig is equipped with six electromagnetic actuators and different types of sensors (eddy-current displacement transducers, acceleration transducers, and strain gages) with the aim of monitoring and controlling shaft and blade vibration levels. Two different actively controlled rotor-blade system configurations are considered in the present study: (i) a tuned bladed rotor, controlled with help of actuators attached to the rotating blades and shaft-based actuators; (ii) a deliberately mistuned bladed rotor controlled only via shaft-based actuation. Experimental tests are carried out for both configurations. Some experimental problems regarding control implementation are identified and discussed, especially when the controller order and the number of actuators in the centralized control scheme become too high; though, for the mistuned bladed rotor controlled by using only shaft-based actuation, the controller works well.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献