Wake Topology of a Cylinder Undergoing Vortex-Induced Vibrations With Elliptic Trajectories

Author:

Kheirkhah Sina1,Yarusevych Serhiy2,Narasimhan Sriram3

Affiliation:

1. Institute for Aerospace Studies, University of Toronto, Toronto, ON M3H 5T6, Canada e-mail:

2. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada e-mail:

3. Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada e-mail:

Abstract

Wake vortex shedding topology of a cylinder undergoing vortex-induced vibrations (VIV) is investigated experimentally. Vibration measurements and flow visualization are utilized to study the connection between the cylinder response and the wake topology. The experiments were performed for two different orientations of the elliptic trajectories relative to the incoming flow at a fixed Reynolds number, moment of inertia ratio, mass ratio, and reduced velocity. Similar to the classical 2P regime, two counter-rotating vortex pairs are produced per oscillating cycle for both cases of elliptic trajectories examined here. However, significant changes in wake vortex dynamics are observed along the cylinder span. These changes include merging of vortices, which leads to shedding patterns similar to 2S and P + S modes downstream of the vortex formation region. The observed changes in vortex dynamics are accompanied by splitting of spanwise vortex filament and are attributed primarily to the changes in the local amplitude of vibrations along the span of the pivoted cylinder. It is shown that, being dependent on both the local amplitude of vibrations and vortex dynamics, the observed wake topology cannot be captured by the classical map of shedding regimes developed for VIV of one degree-of-freedom (DOF) cylinders.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3