Numerical Study of Flame Shapes and Structures in a Two-Stage Two-Injection Aeronautical Burner With Variable Fuel Staging Using Eulerian Large Eddy Simulations

Author:

Cheneau Benoit12,Vié Aymeric3,Ducruix Sébastien3

Affiliation:

1. Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, 91190, France;

2. Safran Aircraft Engines, Rond Point René Ravaud—Réau, Moissy-Cramayel, 77550, France e-mail:

3. Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, 91190, France e-mail:

Abstract

The aim of the present work is to evaluate the ability of large eddy simulation (LES) to predict flame shape and structures in a two-stage two-injection burner representative of new generation staged aeronautical engine: the Banc à Injection Multiple pour les Écoulements Réactifs (BIMER) burner. This combustor is a unique design because of an additional parameter, the staging factor, which controls the fuel mass flow rate splitting between the two swirl stages. Experiments conducted on the BIMER combustor at atmospheric pressure and for a constant power output have revealed that the shape of the flame changes with the staging factor; this shape also depends on the staging factor evolution history (SFEH). Targeting a single operating point and three staging situations, the objectives are to prove the ability of our simulation strategy to predict the proper shapes by reproducing these stabilization processes and to participate in their explanation, using numerical post-treatments. After validation through comparisons with experiments, our study focuses on these three configurations, two of them only differing by their SFEH. Remarkably, correct flame shapes are obtained numerically for the same operating point, fuel staging factors and SFEH. Qualitative and quantitative comparisons show very satisfactory agreement. In a second step, the three flame shapes are analyzed in depth. The key role played by the central and corner recirculation zones in the flames' existence and stabilization processes is emphasized. An original composition space analysis highlights the combustion regimes observed in these three cases, confirming the distinct stabilization scenarios proposed here for the three operating points.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3