A Decoupling Algorithm for Efficient Estimation of Failure Probability Function Based on Statistical Moment Functions

Author:

Li Hengchao11,Lu Zhenzhou1,Feng Kaixuan23

Affiliation:

1. Northwestern Polytechnical University State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, School of Aeronautics, , Xi’an, Shaanxi 710072 , China

2. Northwestern Polytechnical University School of Aerospace Engineering and Applied Mechanics, , Shanghai 200092 , China

3. Tongji University School of Aerospace Engineering and Applied Mechanics, , Shanghai 200092 , China

Abstract

Abstract Failure probability function (FPF) is an important index that reflects the influence of designable distribution parameters on the safety degree of a structure, and it can be used for decoupling reliability optimization models. Thus, its efficient solution is expected. A decoupling algorithm based on statistical moment functions (SMFs) of performance function is proposed to solve the FPF efficiently in this paper. The proposed algorithm first constructs an extended density weight function (EDWF), which can cover the interested region of the distribution parameters and is independent of the distribution parameters so that the statistical moment integrals corresponding to different realizations of the distribution parameters can share the same EDWF. Then, using the same EDWF, a strategy is dexterously designed to estimate the SMFs by sharing a set of integral characteristic nodes. Finally, the FPF is approximated by the SMFs, which varies with the distribution parameters in the interested design region. In addition, the proposed algorithm introduces the Box–Cox transformation of the performance function to guide the high accuracy of FPF approximated by the SMFs. The main contribution of the proposed algorithm is constructing the EDWF to decouple the dependence of solving SMFs on the realizations of the distribution parameters over the interested region and designing the strategy of estimating the SMFs by sharing the same integral characteristic nodes. Since the proposed algorithm employs a point estimation method to evaluate the FPF, it has higher efficiency than the competitive methods. Numerical and engineering examples demonstrate the superiority of the proposed algorithm.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3