Modular Microfluidic Filters Based on Transparent Membranes

Author:

Archibong E.1,Tuazon H.1,Wang H.1,Winskas J.1,Pyayt A. L.2

Affiliation:

1. Innovative Biomedical Instruments and Systems (IBIS) Laboratory, Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620

2. Innovative Biomedical Instruments and Systems (IBIS) Laboratory, Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620 e-mail:

Abstract

We propose a new approach to the modular packaging of microfluidic components, in which different functional components are not only fabricated separately but are also designed to be individually removable for the purposes of replacement or subsequent analysis. In this paper, we demonstrate one such component: a stand-alone microfluidic filter that can be custom-fabricated and then connected, disconnected, and replaced on a microfluidic chip as needed. This filter is also designed such that particles captured on the filter can be further analyzed or processed directly on the filter itself—for example, for microscopic examination or cell culturing. The filter is a thin (1 μm) transparent silicon nitride membrane that can be designed and fabricated according to specifications for different applications. This material is suitable for microscale fabrication; filtration of a variety of solutions, including biological samples; and subsequent particle imaging and processing. The porous nature of the thin filter allows for particle separation under relatively low pressures, thus protecting the particles from rupture or membrane damage. We describe two methods for integrating the filter apparatus onto a microfluidic chip such that it can be inserted, removed, and replaced. To demonstrate the utility of this approach, we fabricated custom-designed silicon-based filters, incorporated them onto microfluidic systems then filtered microparticles and live cells from test solutions, and finally removed the filters to image the microparticles and culture the cells directly on the filter membranes.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of an optofluidic sensor for rapid detection of hemolysis;Sensors and Actuators B: Chemical;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3