Enhancement and Prediction of Heat Transfer Rate in Turbulent Flow Through Tube With Perforated Twisted Tape Inserts: A New Correlation

Author:

Ahamed J. U.1,Wazed M. A.2,Ahmed S.2,Nukman Y.2,Ya T. M. Y. S. Tuan2,Sarkar M. A. R.3

Affiliation:

1. Department of Mechanical Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong 4349, Bangladesh

2. Department of Engineering Design and Manufacture, University of Malaya (UM), 50603 Kuala Lumpur, Malaysia

3. Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1000, Bangladesh

Abstract

An experimental investigation has been carried out for turbulent flow in a tube with perforated twisted tape inserts. The mild steel twisted tape inserts with circular holes of different diameters (i.e., perforation) are used in the flow field. An intensive laboratory study is conducted for heat transfer and pressure drop characteristics in the tubes for turbulent flow with various airflow rates. Heat transfer and pressure drop data are engendered for a wide range Reynolds number (1.3×104–5.2×104). Tube wall temperature, pressure drop, air velocity, and its temperature are measured both for plain tube and for tube with perforated twisted tape inserts. Heat transfer coefficients, Nusselt number, pumping power, and heat transfer effectiveness are calculated for both cases. Experimental results showed that perforated twisted inserts of different geometry in a circular tube enhanced the heat transfer rate with an increase in friction factor and pumping power for turbulent flow. The pumping power, heat transfer coefficient, and effectiveness in the tube with the twisted tape inserts are found to increase up to 1.8, 5.5, and 4.0 times of those for the plain tube for same Reynolds number, respectively. Finally, a correlation is developed for prediction of the heat transfer rate for turbulent flow through a circular tube with perforated twisted tape inserts.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3