Bubbles Transient Growth in Saturation Boiling of PF-5060 Dielectric Liquid on Dimpled Cu Surfaces

Author:

Suszko Arthur12,El-Genk Mohamed S.1345

Affiliation:

1. Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131;

2. Mechanical Engineering Department, University of New Mexico, Albuquerque, NM 87131

3. Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131;

4. Mechanical Engineering Department, University of New Mexico, Albuquerque, NM 87131;

5. Chemical and Biological Engineering Department, University of New Mexico, Albuquerque, NM 87131 e-mail:

Abstract

Investigated is the transient growth of vapor bubbles in saturation boiling of PF-5060 dielectric liquid on 10 × 10 mm, uniformly heated Cu surfaces with circular dimples, at an applied heat flux of 0.5 W/cm2. At such low heat flux, the surfaces are populated with growing discrete bubbles, emanating mostly from the manufactured dimples. The 300, 400, and 500 μm diameter and 200 μm deep dimples are manufactured in a triangular lattice with a pitch-to-diameter ratio of 2.0; thus, the total number of dimples increases with decreasing the dimple diameter. Captured video images of growing discrete bubbles at a speed of 210 frames per second (fps) confirm that the bubble diameter increases proportional to the square root of the growth time, and the bubble departure diameter and detachment frequency increase with increasing the dimple diameter. The total volumetric growth rate and diameter of the bubbles at departure increase with increasing the dimple diameter, ∼1.81, ∼4.75, and ∼8.2 mm3/s and ∼738 μm, ∼963 μm, and ∼1051 μm for the 300, 400, and 500 μm diameter dimples, respectively. The corresponding bubble detachment frequency is ∼8.6 Hz, ∼10.2 Hz, and ∼13.5 Hz, respectively. The fraction of the active dimples for bubble nucleation on the surfaces with 300, 400, and 500 μm dimples, at an applied heat flux of 0.5 W/cm2, is ∼0.85, ∼0.64, and ∼0.53, respectively. On these surfaces, the estimated bubble volume at departure is ∼0.21 mm3, ∼0.47 mm3, and ∼0.61 mm3, and the corresponding rate of energy removed by a single bubble is ∼1.99 mW, ∼5.24 mW, and ∼9.02 mW, respectively. These results help explain the measured enhancements in nucleate boiling and the critical heat flux (CHF) on the dimpled Cu surfaces.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3