Compression of Fibrous Assemblies: Revisiting the Stress–Density Relation

Author:

Picu Catalin R.1,Negi Vineet1

Affiliation:

1. Rensselaer Polytechnic Institute Department of Mechanical, Aerospace and Nuclear Engineering, , Troy, NY 12180

Abstract

Abstract Many engineering materials are made from fibers, and fibrous assemblies are often compacted during the fabrication process. Compression leads to the formation of contacts between fibers, and this causes stiffening. The relation between the uniaxial stress, S, and the volume fraction of fibers, φ, is of power law form. The derivation of this relation based on micromechanics considerations takes as input the structural evolution represented by the dependence of the mean segment length of the network, lc, on the current density, ρ (ρ is defined as the total length of fiber per unit volume of the network). In this work, we revisit this problem while considering that the mean segment length should be defined exclusively by fiber contacts that transmit load. We use numerical simulations of the compression of crimped fiber assemblies to show that, when using this definition, ρ∼1/lc2 at large enough strains. Purely geometric considerations require that ρ∼1/lc, and we observe that this applies in the early stages of compaction. In pre-stressed networks, the density–mean segment length scaling is of the form ρ∼1/lc2 at all strains. This has implications for the relation between stress and the fiber volume fraction. For both ρ versus lc scalings, S∼(φn−φ0n), where φ0 is the initial or reference fiber volume fraction; however, n = 3 when ρ∼1/lc and n = 2 for ρ∼1/lc2. These predictions are compared with experimental data from the literature.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Network Materials

2. The Structure of Paper, I. The Statistical Geometry of an Ideal Two Dimensional Fiber Network;Kallmes;Tappi J.,1960

3. Models for Stiffening in Cross-Linked Biopolymer Networks: A Comparative Study;van Dillen;J. Mech. Phys. Solids,2008

4. The Physics of Paper;Alava;Rep. Prog. Phys.,2006

5. Fiber Crowding, Fiber Contacts, and Fiber Flocculation;Dodson;Tappi J.,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3