The Role of Particle Size Distribution for Fluid Loss Materials on Formation of Filter-Cakes and Avoiding Formation Damage

Author:

Klungtvedt Karl Ronny12,Saasen Arild2

Affiliation:

1. EMC , Stavanger 4033 , Norway ;

2. University of Stavanger Department of Energy and Petroleum, Engineering, , Stavanger 4036 , Norway

Abstract

Abstract Numerous studies have shown that careful particle size selection is the main parameter for reducing fluid loss when drilling permeable or fractured formations. The methods are generally built around either the D50 or D90 values of the particles in the fluid as a relative size to the pore openings of the formation to minimize fluid loss. A series of studies were conducted with the aim of assessing if analysis of fluid loss could be used to separate the formation of internal and external filter-cakes, thereby enabling a more accurate estimate of the permeabilities of the internal and external filter-cakes. It was concluded that conventional particle size methods were found to be adequate for designing a fluid for wellbore stabilization purposes. This led to higher solids invasion and a more impermeable internal filter-cake. However, for optimization of reservoir drilling fluids, a different particle size selection method was found to be more useful to prevent reservoir formation damage. This method involves selecting particles that are resistant towards shear-degradation and with a D90 particle size ⪞3/2 the pore size of the formation. By analyzing fluid loss regression data and correlating these with indicators of formation damage, such as disc mass and permeability change, it was found that a ratio defined as the relative plugging factor could provide insight into the extent of solids invasion into the formation and potential formation damage.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3