Affiliation:
1. e-mail:
2. Whittle Laboratory, University of Cambridge, Cambridge CB3 0DY, UK
Abstract
The objective of this work was to assess and understand the effects of a parametric variation performed on a typical overlapping rim seal geometry. The datum geometry has been the focus of a detailed experimental investigation employing a large-scale linear cascade subjected to a range of the mass flow rates and swirl velocities of the leakage air. The parametric variations described in this paper were examined using validated computational fluid dynamics (CFD). As a part of the parametric studies, both the axial and the radial seal clearance between the rotor fin (angel wing) and stator platform were varied as well as the length of the overlap between stator and rotor platforms. In addition, the effects of forward and backward facing annulus steps were also investigated. It has been found that a backward-facing annulus step was detrimental for all conditions considered, while a forward-facing step offered improvements for smaller step heights and/or lower leakage fractions. Tightening of the seal clearances closer to the annulus line improved the sealing effectiveness but often at the expense of increased losses. On the other hand, increasing the overlap length led to improvements in the sealing effectiveness with very small effects on the overall losses. Moving the rim seal away from the blade-leading edges reduced the pressure asymmetry at the rim seal and increased the flow uniformity of the leakage air. However, this led to an increased cross-passage flow (more negative skew) and higher losses at all but lowest leakage fractions. The results presented in this paper highlight the fact that there may not be an optimum rim seal solution that would offer an improvement for the full range of leakage fractions and that, for different rim sealing flows, there may be a different optimum geometry. In addition, rotor disk movements in radial and axial directions at various off-design conditions should be considered as a part of the design process. Based on the presented results, it may be of a benefit to the turbine designer to consider rotor disk designs that would be more biased towards the upstream and outward disk movements, which would result in tightening of the seal clearances and avoidance of a backward-facing annulus step.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference14 articles.
1. Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame;ASME J. Turbomach.,2001
2. Endwall Cavity Flow Effects on Gaspath Aerodynamics in an Axial Flow Turbine: Part I—Experimental and Numerical Investigation,2000
3. Investigation of the Influence of Different Rim Seal Geometries in a Low-Pressure Turbine,2011
4. Comparison of Flow Characteristics in Axial-Gap Seals for Close- and Wide-Spaced Turbine Stages,2007
5. The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors,2000
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献