Statistical Approach for Computational Fluid Dynamics State-of-the-Art Assessment: N-Version Verification and Validation

Author:

Stern Frederick1,Diez Matteo2,Sadat-Hosseini Hamid3,Yoon Hyunse3,Quadvlieg Frans4

Affiliation:

1. IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242 e-mail:

2. IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242; CNR-INSEAN, National Research Council—Marine Technology Research Institute, Rome 00128, Italy

3. IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242

4. MARIN, Maritime Research Institute Netherlands, Wageningen 6708 PM, The Netherlands

Abstract

A statistical approach for computational fluid dynamics (CFD) state-of-the-art (SoA) assessment is presented for specified benchmark test cases and validation variables, based on the combination of solution and N-version verification and validation (V&V). Solution V&V estimates the systematic numerical and modeling errors/uncertainties. N-version verification estimates the random simulation uncertainty. N-version validation estimates the random absolute error uncertainty, which is combined with the experimental and systematic numerical uncertainties into the SoA uncertainties and then used to determine whether or not the individual codes/simulations and the mean code are N-version validated at the USoAi and USoA intervals, respectively. The scatter is due to differences in models and numerical methods, grid types, domains, boundary conditions, and other setup parameters. Differences between codes/simulations and implementations are due to myriad possibilities for modeling and numerical methods and their implementation as CFD codes and simulation applications. Industrial CFD codes are complex software with many user options such that even in solving the same application, different results may be obtained by different users, not necessarily due to user error but rather the variability arising from the selection of various models, numerical methods, and setup options. Examples are shown for ship hydrodynamics applications using results from the Seventh CFD Ship Hydrodynamics and Second Ship Maneuvering Prediction Workshops. The role and relationship of individual code solution V&V versus N-version V&V and SoA assessment are discussed.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modelling and Simulation,Statistics and Probability

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3