Trailing Edge Perforation for Interaction Tonal Noise Reduction of a Contra-Rotating Fan

Author:

Wang Chen1

Affiliation:

1. Laboratory of Aerodynamics and Acoustics, Department of Mechanical Engineering, HKU Zhejiang Institute of Research and Innovation, The University of Hong Kong, Pokfulam, Hong Kong e-mail:

Abstract

This study focuses on a passive noise abatement technique in a small contra-rotating fan, aiming at reducing the interaction noise between the two rotors through porous trailing edge (TE) treatment to the forward rotor. A preliminary design with fixed perforation parameters is experimentally investigated, and 6–7 dB overall noise reduction is achieved compared with baseline design under the same aerodynamic output. A three-dimensional (3D), full-wheel, unsteady-flow numerical simulation of the acoustic design is carried out to better understand the noise reduction mechanism. Comparisons of monitored unsteady forces acting on both the forward and the aft rotor between baseline and perforated fan indicate that such treatment reduces all the unsteady forces. Thus, it can be concluded that the noise reduction would be due to not only the mitigation of viscous wake of forward rotor before impinging upon the downstream blades but also the reduction of the response of the upstream rotor to the potential flow interaction with the downstream rotor. Furthermore, a parametric study in a selected range is conducted to minimize the adverse effect of aerodynamic unloading due to TE perforation and to improve the acoustic benefit. The parameters in the parametric study include perforation ratio, aperture diameter, and perforation distribution. Trends are deducted from this, and it is recommended that there exists an optimal perforation ratio; the smallest possible aperture diameter and the decreasing perforation ratio distribution away from the blade TE should be selected in consideration of both aerodynamic and acoustic effects.

Publisher

ASME International

Subject

General Engineering

Reference49 articles.

1. Modeling Contra-Rotating Turbomachinery Components for Engine Performance Simulations: The Geared Turbofan With Contra-Rotating Core Case;ASME J. Eng. Gas Turbines Power,2012

2. A Numerical Method for the Design and Analysis of Counter-Rotating Propeller;J. Propul. Power,1986

3. The Sound Field for Singularities in Motion;Proc. R. Soc. London, Ser. A,1965

4. Theoretical Analysis of Compressor Noise;J. Acoust. Soc. Am.,1970

5. A Study of the Rotor/Rotor Interaction Tones From a Contra-Rotating Propeller Driven Aircraft,1986

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3