Slow-Time Changes in Human EMG Muscle Fatigue States Are Fully Represented in Movement Kinematics

Author:

Song Miao1,Segala David B.1,Dingwell Jonathan B.2,Chelidze David1

Affiliation:

1. Nonlinear Dynamics Laboratory, Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island, Kingston, RI 02881

2. Nonlinear Biodynamics Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX 78712

Abstract

The ability to identify physiologic fatigue and related changes in kinematics can provide an important tool for diagnosing fatigue-related injuries. This study examined an exhaustive cycling task to demonstrate how changes in movement kinematics and variability reflect underlying changes in local muscle states. Motion kinematics data were used to construct fatigue features. Their multivariate analysis, based on smooth orthogonal decomposition, was used to reconstruct physiological fatigue. Two different features composed of (1) standard statistical metrics (SSM), which were a collection of standard long-time measures, and (2) phase space warping (PSW)–based metrics, which characterized short-time variations in the phase space trajectories, were considered. Movement kinematics and surface electromyography (EMG) signals were measured from the lower extremities of seven highly trained cyclists as they cycled to voluntary exhaustion on a stationary bicycle. Mean and median frequencies from the EMG time series were computed to measure the local fatigue dynamics of individual muscles independent of the SSM- and PSW-based features, which were extracted solely from the kinematics data. A nonlinear analysis of kinematic features was shown to be essential for capturing full multidimensional fatigue dynamics. A four-dimensional fatigue manifold identified using a nonlinear PSW-based analysis of kinematics data was shown to adequately predict all EMG-based individual muscle fatigue trends. While SSM-based analyses showed similar dominant global fatigue trends, they failed to capture individual muscle activities in a low-dimensional manifold. Therefore, the nonlinear PSW-based analysis of strictly kinematic time series data directly predicted all of the local muscle fatigue trends in a low-dimensional systemic fatigue trajectory. These results provide the first direct quantitative link between changes in muscle fatigue dynamics and resulting changes in movement kinematics.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3